If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1+3x=10x^2
We move all terms to the left:
1+3x-(10x^2)=0
determiningTheFunctionDomain -10x^2+3x+1=0
a = -10; b = 3; c = +1;
Δ = b2-4ac
Δ = 32-4·(-10)·1
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-7}{2*-10}=\frac{-10}{-20} =1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+7}{2*-10}=\frac{4}{-20} =-1/5 $
| 3×3y+136=180 | | -5x-16=18 | | $12.50x+$7.50=$50.00 | | 3y-3+136=180 | | 3z-24=81 | | 3y×3=136 | | 7x-5=-4×+2 | | 12.50x+7.50=50 | | -2=-3+3x | | (5x-6)+3x+x=180 | | 0.7m-8=2.3m+14 | | -3(4x+8)+2=-58 | | 0,15x=0,05x+12 | | n-1-4n=-10 | | 5a–103=45 | | 3y+3-136=180 | | 4(3x-12)=24 | | 81÷3x=27 | | -5(5-x)=-35 | | (x+3)^2-5=11 | | 18k−2=38k+4 | | x-15=3(x-5) | | 3+x=2x-9 | | 2y/3-y+3/6=2 | | -7=-3+-1/6y | | 10=-12-(-2x) | | 1/2-5/8d=7/8d+7/2 | | -3(x+7)=-60 | | 3/7x+6=12 | | 2x-10(0)=4 | | 3y+3+136=180 | | m=4;(2,7) |